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THE BOUNDARY VALUE PROBLEM OF THE 
OF A GROWING BODY 

THEORY OF VISCOELASTIC PLASTICITY 
SUBJECT TO AGING* 

N.Kh. ARUTYUNYAN and V.E. NAWMOV 

The formulation of the boundary value problem for a visco-elastic-plastic 
growing body taking into account its increasing inhomogeneity caused by 
the sequence and speed of accretion is considered. The presence of two 
changing boundaries, namely, the external surface of the body and the 
boundary of the material plastic state, is characteristic for this formula- 
tion. The complete system of equations and conditions of the boundary 
value problem for a continuously growing body is presented. AS an example 
of the application, a model problem is given of a non-uniformly aging 
hollow spherewith a shifting outer surface. Conclusions are drawn 
regarding the substantial effect of the accretion speed and the preliminary 
stress of the growing elements on the stress-strain state of the body. 

Problems of the accretion of a deformed solid are encountered when investigating techno- 
logical processes such as winding, spraying, and icing, and also in the gradual erection of 
structures and the growth of bodies of organic and inorganic origin. Similar processes occur 
in phase transformations in maLerials, in the polymerization and crystallization in amorphous 
bodies, etc. 

Since actual accretion processes usually take a considerable time, the effect of aging 
and creep of the material becomes important when determining the stress-strain state of 
growing bodies. Certain model problems of the accretion of viscoelastic non-uniformly aging 
bodies were investigated in /1,2/. 

To estimate the strength and load-carrying ability of growing bodies it is, however, 
necessary to take into account that at fairly high stress levels, regions of plastic state 
may appear and develop in the material. Because various elements of the body during growth 
originate (are produced) at different instants of time, its plasticity limit k at the point 
x= {~Irn,z,) together with other physicomechanical properties depend on the material age at 
the point, i.e. are a function of time and the space coordinates k=kO--7. (x)), where r* (x) 
is the instant of appearance of the element of the body whose position in Cartesian coordin- 
ates is defined by the vector Y. Various aspects of the theory of plasticity of inhomogene- 
ous bodies and a review of publications in this area can be found in /3/. General problems 
of the mechanical behaviour of viscoelastic-plastic bodies were considered in /4/. 

1, A model of an inhomogeneously aging viscoelastic-plastic body. The 
defining equations. Let us assume that the region B occupied by the body is divided by 
the surface S,, into a region 9, where the material is in a viscoelastic state, and a region 

8, of plastic state. We denote the instant when the material at the point x transfers into 
the plastic state by 'C*(X). #e assume that at t<z'(x) the total shear deformation at the 
point considered is the sum of the instantaneous elastic and of viscous components elf= 

e$ i- eE;, while at t> z+ (x) it is equal to efj=e$ + 4; -i- .?I& where @: are the compon- 
ents of the plastic deformation deviator (here and everywhere below i,j- i, 2, 3). 

We will take for the total shear deformation in the viscoelastic region the defining 
equation of the linear theory of viscoelasticity of inhomogeneously aging media /5/ 

eff (6 x) - L (Bit), t > Ir* (x), I E 0, (la11 

where Sff are the components of the stress deviator and L is the linear integral opeartor 
acting on some function a&x) by the rule 

t 
L(a)= 

a (x) 
zC(t-Tr+(x)) - s 

z'(X) 
2CR(1;:!(x)) q(~--*b)~'F--*w)~~ 

where c(t) is the time-dependent instantaneous elastic shear modulus, and O&T) is the 
creep kernel, determined from creep experiments on uniaxial stretching. 
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We will write the condition of plasticity and its corresponding law of flow (the dot at 
the top denotes the partial derivative with respect to) 

!(oij)=o, p. Jf Pij = h - , Jdij XEQr 

where uij are the components of the stress tensor , and 1 is some positive coefficient of 
proportionality when f(utj) = U. The case when f'(Ufj)<O, which corresponds to unloading, is 
not considered here. Taking the Mises plasticity condition , we have in the plastic region 
the following defining relations: 

S* (t, X) = k (t - T* (X)), S* = (‘/++jSij)“’ (1.3) 

where s,, e, P are the stress deviator intensities and plastic deformation rates, respectively 
(the dot in the notation e*". has a symbolic meaning). 

The volume deformation is, for simplicity, assumed to be ideally elastic and independent 
of the stress level 

e_(t, x)= ‘Imm@* x) 
3K(t--l*(x)) ' m= 1,2,3, t > r* (x), x 6s Q (1.5) 

where eij are the components of the total deformation tensor, and K is the variable modulus 
of elastic volume deformation. 

2. Statement and basic equations of the boundary value problem of the 
theory of viscoelastic-plasticity for a growing body. In the region occupied by 
thebody the equations of quasistatic equilibrium must be satisfied (inertia effects during 
accretionareneglected) and the Cauchy geometric relations, which for a body in the process 
ofaccretionare expressed in terms of velocities /5/ 

o11,1 + x1 = 0, t > T* (x), x 6z Q (2.1) 

eij’= + (Ui, j -b l&i,,), t > T* (X), X E P (2.2) 

where Xt, ~1 are vectors of the volume forces and displacements, respectively. The quantities 
that determine the formulation (and consequently the solution) of the problem obviouslydepend 
on time and the space coordinates. For simplicity, the arguments of these quantities are 
sometimes omitted. 

Since in formulas (2.2) we have the first derivatives with respect to, the formulation 
of the boundary value problem for the growing body must be supplemented by the initial values 
of the stress and deformation tensor components /6, 7/ (in this connection the boundary value 
problem considered here could be naturally called the "initial" boundary value problem). This 
requirement as applied to the conditions of continuous growth is a reflection of the physically 
obvious fact that a generated element before joining the main body is in no way connected with 
the latter. For the theoretical possibility of determining the stress-strain state of the 
composite body obtained, it is necessary to specify the complete stress state of the element 
being deposited (the state of the body prior to the deposition of recurrent elements is 
assumed known). 

Suppose that at the instant the element is generated, coincident with the instant of its 
accretion, its stresses are given by the tensor 

Off" (x) =I (JiJ (r* (x), x) (2.3) 

The magnitude of the preliminary (initial) deformation of the element sir(x)= QJ (r* (X)9 X) 

in this case is determined from the respective defining equations. We shall consider the 
case when the preliminary stresses do not exceed the initial plastic limit. Then in themodel 
of the medium considered the relation between the prestress tensor and that of initial defonn- 
ation is defined by the instantaneous elastic part of the equation of state (1.1) and Eq.cl.5) 
when t = z* (x) 

'i j” Cx) 
%j”CX)= 2~ (0) + (2.4) 

where 6fj is the Kroneker delta. 
Equation (2.2) implies that the initial displacement vector Z&"(x)=% (r* (x)7 x) is 
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immaterial for the stress-strain state of the growing body, and can be arbitrarily selected 

from some supplementary considerations. 
The boundary conditions of the boundary value problem have +e form 

ctjnf =pi* 12 r* (x), x E s, (2.5) 

m1 = U*, i! > z* (x), x E s, (2.6) 

where s,, s, are the parts of the body surface on which the stress vectors pt and displacement 
vi, respectively are specified, and nf is the unit vector of the normal to the body surface. 

The symbol S,(t) denotes that part of body surface over which, at the instant of time t, its 
accretion takes place. Fig.1 shows schematically the boundaries that divide the body into 
sections with different boundary conditions. The dashed lines denote the positions of the 

Fig.1 

moving section of the external boundary S, at separate 
instants of time, and that of the changing boundary 
Sr2(tl< t8< tx) of the plastic state of the material. 

The stationary sections of the external boundaries &and 

& in the course of accretion of the body, generally 
speaking, expand. The stress vector that determines the 
action of the external force on the surface of growth 
can be specified on S,. The initial values of the 

components of the stress tensor atjo must be specified 
taking this action into account. 

In fact, conditions (2.5), when they are specified 
on a part of the growing surface must be regarded as three 
relations imposed on the initial values of the six stress 

tensor components. In this case this means that only three components of the stress tensor 
can be specified independently on the growing surface, namely, the three components of the 
tensor OiJO acting on a small area with normal ni are determined by the components of the 
specified external stresses vector pi from (2.5). The remaining three components of the tensor 

0ip are specified independently, and represent the controllable initial stressoftheaccreted 
element /6/. 

We will assume for simplicity that the set of six functions uljD and the function Z* are 
continuous with respect to the space coordinates, and the functions k, G, K are continuous 
with respect to time. 

On the separation surface S,,(t) of the viscoelastic and plastic regions we stipulate 
that the conditions of continuity of all the stress tensor components and of the displacement 
vector are satisfied, namely, 

cJfj(l) (tj X) = Uij(*) (tg X) 

up (1, x) = up (f, x), x E SIZ (t) 
(2.7) 

where the superscripts denote that the respective quantities belong to the viscoelastic or 
plastic region. 

The equations of state (l.l), (1.2) and (1.5), the equations of equilibrium (2.1), the 
relations between the deformation and displacement rates, the initial conditions (2.3), (2.4), 
the boundary conditions (2.5), (2.61, and the conditions at the interface constitute the 
complete system of equations and conditions of the boundary value problem of the theory of 
the viscoelastic-plastic state for a non-uniformly aging growing body. 

Note that besides growing bodies, bodies undergoing a change in their shape owing to 
continuous removal of some part of their volume may be considered. As an example of this, we 
can mention damage to the elements of a structure by corrosion and cavitation, the action of 
other kinds of agressive media, ablation during blowing, burn-up of solid fuels, thawing,' 
evaporation, etc. Situations are also possible in which the accretion and particle removal 
from bodies under load occur simultaneously at different sections of its boundary. The form- 
ation of the stress field can be studied using the general formulation of the boundary value 
problem for a body with changing boundary presented here, without any modification. 

3. The problem of the continuous growth of a hollow sphere. 10. Statement of 

the problem. Let the process of growth of a hollow sphere begin from the generation at the 
instant of time t= 0 of an elementary spherical layer of radius a. Then, (at t> 0) the 
sphere radius increases in accordance with the specified law b=b(t). We will assume the 
function b(t) to be monotonically increasing and continuous. At the instant to (b (to) = b,) 
an internal pressure pO> 0 is applied to the sphere which subsequently varies in conformity 
with the law p= p (1) > 0 (p (to) = pJ. It is assumed that up to the instant t, the growth of 
the sphere occurs without preliminary stressing of the layers. Suppose, furthermore, that 
the inner part of the sphere under the initially applied pressure passes into the plastic 
state. By the spherical symmetry of the problem, the boundary surface of the plastic zone is 
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a sphere of time-dependent radius c(t). 
For the function r*(r) that defines the instant of production (aeneration) of the ele- 

mentary layer of the hollow sphere of radius r we have the relations r* (a) 
b (z* (r)) = r, 7' (b (t)) E t. Hence the functions Z* and b are reciprocal. 

Let us write the relations defining the statement of the problem. 
At any point of a hollow sphere of radius (U<r< b(t)) Eqs.(3.1) (given 

static equilibrium must be satisfied (the subscripts r, 8 denote the radial 
component, respectively), the geometric relations (3.2) between the rates of 
displacement, Eq.(3.3) of the compatibility of the rates of deformation, and 
equation (3.4) for the volume deformation have the form 

a3, v, 4 
-+ ar + [U, (t, r) - ue (fl r)] = 0 

aa (1, r) 
e,’ (t, r) = 7 , ee’ (t, r) = + 

$’ (4 r) 
ar + f [ei (t, r) - e,‘(t, r)] = 0 

e (t, r) = * 

In the viscoelastic region (c(t)< r< b(t)) we have 
equation 

Cf(e) (k r) = L (+m) 

= 0, z* (b,) = to, 

below) of quasi- 
and peripheral 
deformation and 
the defining 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

K=canst 

for the shear deformation the defining 

(3.5) 

L(a)= 2 a Ct. r) G (t-T*(r)) - s 
Q(T, r) 

2L;tr__T+(r)j Q(t--*(r),7--*(r))dr 
To(r) 

where T'(r) is the instant the stress is applied to the layer of radius r, and the boundary 
condition is 

U, (t, b (0) = 0 
(3.6) 

In the plastic region the material mechanical behaviour is defined by formulas similar 
to the relations of deformational plasticity 

43) VT r) = e*p ct. r) 
k (t _ TV tr)) ST (8) (6 4 (3.7) 

When a.< r.< c(t) the condition of plasticity (k is the plastic limit for pure shear) 

Ue (t, r) - 0, (t, r) = f3k (t - T* (r)) (3.8) 

is also satisfied. 
On the inner surface of a hollow sphere we have the condition 

U, (C U) = -P @) (3.9) 

It is assumed, in accordance with the statement of the initial boundary value problem, 
that at the instant of accretion of an elementary layer of some radius r, its deformations 
and stresses are specified by 

s,(e) (+ (r), r) = Gcej (4 (3.10) 

4~ (T* (r), r) = U;(e) (rh b, < r < b (4 

D 0 
where e,(e), 9(e) are continuous functions of the radius linked by relations of the form (2.4). 
As indicated in Sect-Z, the boundary condition on the external surface of the growing hollow 
sphere, must be taken into account when establishing initial stresses. In this case, in view 
of condition (3.6) we, obviously, must have U,"(r)= 0. 

Moreover, at the interface of the viscoelastic and plastic regions the conditions of 
continuity of the components of the stress and radial displacement are formulated as follows: 

UP (t, c (1)) = u$*) (f, c (t)) (3.11) 

u& (t, C (t)) = Ue") (t, C (t)) 

tP) (t, c (t)) = u(2) (t, c (t)) 

At the external surface of the original hollow sphere the condition of continuity of the 
radial stress 

uJ*) (t, b,) = o,(s) (t, b,) (3.12) 
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must be satisfied. 
The superscripts 1, 2, 3 denote that the quantities belong to 

radial component variation a.< r< c(t), c(t)< r < b,, b, < r < b(t). 
the following ranges of the 

20. Solution of the problem in the case of perfectly elastic volume deformation. 
Substituting the condition of plasticity (3.8) into the equilibrium equation (3.1), and 

integrating with respect to the radius from a to I, taking the boundary condition (3.9) into 

account, we obtain for the radial stress in the plastic region the expression 

aS"(t, r)= -' p (t) + 2 1/y i p-Q+ (t - z* (p)) dp (3.13) 

0 
Let us determine the stresses in the viscoelastic region. For the components of total 

deformation when c(t)< r.< b(1) we have 

E,=-+L(o,-oae)+& (3.14) 

&I= -+(se-uo,)+~ 

The deviators of the stress and deformation intensities are defined as follows. 

ae-% 

s*=l/v' 

Fe--G 

e*=T 

(3.15) 

and by virtue of (3.5) these quantities are connected by the relation 

e, = L (G) 

Hence 
2e* E,==--+ 

:? cza, 
1/s 9/i 

a,+ %j 
&a=++ SK 

Substituting these expressions into the equations of compatibility of the deformation 
rates (3.3) we obtain 

~+~++&_(l/p_!&~),o 
(3.16) 

From the equilibrium equation we have 

z&1/~(++2+)30 (3.17) 

Eliminating aad/& from (3.16), (3.17) and integrating the equation obtained with respect 
to I and, then, with respect to t, taking the initial conditions (3.10) into account, we 
obtain 

3Ke* (t’ ‘) ’ 2s* (t’ r, 

A WP, c(t)<r<bo 
= [A(t) - A (~6 (r))j/r* + 3Ki” (r), bo<r<b(t) 

(3.18) 

T (4 = e, W (r), r) -t- &s, (r+ (r), r) 

where A is a function of time, to be determined, and the radial coordinate function T (r) 
defines the initial stress-strain state of the growing layer of radius r. 

Let us consider regions 2 and 3 separately. Substituting (3.15) into the first relations 
of (3.18), we obtain the Volterra integral equation of the second kind in se. 

L(s,) +&-s, (t, r)=-* 

We write the transformation of this equation in the form 

(3.19) S* (t, r)= 
p+;@)) R(A) 

E"(t - r* (r))-[ 2G (t_'+(r)) + &}-l 

where Ris the linear integral operator acting on some function a (t, r) in accordance with 
the following definition: 
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R(Ns(r(t,r)+ [ a(T,r)R(t-T*(r), r-z*(r))dr 
r'(r) 

(3.20) 

where R (t, r) is the resolvent of the kernel ‘I,E” (z) Q (t, T) / G (z). Note that in region 2 
z" (r) G to. 

Substituting (3.19) into the equation of equilibrium and integrating with respect to the 
radius from some r to b,,, we obtain 

0:’ (t, r) =q(t,b,,)- &jA(t)jp-T’(t-~*(p))dp+ t- (3.21) 

{ A(T) $+E (t - T* (p))R(t - T* (p), t 
t 

- 7* (P)) dp] dr} 
7 

In (3.21) there appears the so far undetermined radial stress on the external surface 
of the original hollow sphere. 

In a similar manner we can determine the radial stress in region 3 (b, -< r Q b (t)), i.e. 
in the accreted region. From (3.18), instead of (3.19) we have here 

(3.22) 

where t' -r*(r) and R is the operator (3.20) with ?GT*. 
SuEsituting (3.22) into (3.11, integrating over the radius from a certain r to b 0) 

taking boundary condition (3.6) into account, changing the order of integration with respect 
to p and%, and making the change of variables E=z* (p) (or, which amounts to the same, p= 

b (E)), after some reduction we obtain 

f 
a?) (t, r) = - & i s A (t) r.tr, 0 (6 E) dS - (3.23) 

where b’ is the derivative of the function b. 
The expression for the circumferential stress Ue(t, r) is determined in region 1 from 

(3.8) and (3.131, in region 2 from (3.19) and (3.23), and in region 3 from (3.22) and (3.23). 
Taking into account the continuity condition (3.12) , we obtain from (3.23) an expression 

for the stress a,(& b,,) in terms of the function A. Substituting the expressions obtained 
for the stress components into the continuity conditions (the first two formulas (3.11)), we 
obtain 

A(t) ii w(t,5)85--i;A(r)jo(f,r)Z(t,r)- (3.24) 

3K if ’ k (t - 5) J. (5) dS i i T (b(E)) E” (t - E) z (t, E) I. (5) dg} 
0 L* 

A(t) + f A(-c)R(t - t* (c), z -T* (c))d% = 3Kc3 ‘(‘-- ‘*(‘)) E” (1- t* (c)) 
to 

(3.25) 

The radius of the plastic region corresponds to the instant t, i.e. C = C (L). The 
solution of the problem has thus been reduced to finding the functions A (t) and c(t) from the 
system of integral equations (3.24) and (3.25) that are linear with respect to the function 

A (t). After solving this system of equations, the deformations in the viscoelastic region 



c(2)< r -< b (2) are determined using (3.14). 
We will now determine the deformed state in the plastic region. For the deformation 

comnonents we have 

Since for a<r<c(t) the condition of plasticity (3.8) applies, then s,=k and, 

consequently, 
e, = - + (L(k) + ewP) + & (0, -t 2~) 

Ee=+L(k)+ esPl -t &@, + 2ae) 

From the compatibility equation of the deformation components we find 

&L(k)+e,P)+ ${L(k)+eapl-&-$+ *2-O 

and from the equilibrium equation we have 

Substituting (3.28) into (3.27) and integrating with respect to I, we obtain 

(3.27) 

(3.28) 

e,P(tvr) 
B (0 

ST- -&k---L(k) 

where 3 is an undetermined function of time. 
Since u=rE'eg when a,<?-< b,, the conditions of displacement continuity (the third rela- 

I tion of (3.11)) when r= c(d) must have ,eeP(t,c) -0. It then follows from (3.7) thate,P(t,~)= 
0, and for the function B we have the expression 

B(t)= c8 i L(k)Im -k&w--*w}, c=c(t) 

The deformation components in the plastic region can now be determined using (3.26). 
Note that the solution of the problem, determined by the system of Eqs.(3.241 and (3.25) 

is real when the conditions c'>O and cQ b, are satisfied when t> t,. If the radius of 
the plastic region at some instant of time reaches the external radius of the original hollow 
sphere, the subsequent analysis necessitates some modification of relations that determine the 
solution of this problem. The wall thickness of the hollow sphere will then consist of two 
regions: a region of plastic state of material and a region of accretion. This case is 
considered similarly. . 

The elastic-plastic deformation of an inhomogeneous hollow sphere of elastically compres- 
sible material was investigated in /8/, The problem of plastic wave propagation in a thick- 
walled pipe of viscoelastic-plastic material was considered in /9-X/. The solution of the 
problem of the growth of an incompressible viscoelastic hollow sphere under conditions of non- 
uniform aging was given in /12/. 

3'. Solution of the problem in the case of an incompressible material. Let us consider 
the above problem with the additional. assumption that the material is incompressible. 

Let us assume that the prestressing of layers at r> b. is determined by the equations 

0, (r* (& r) = 0, ae fr* (r), r) = c$ (r) 

where (U!(r) is a given function. 
From the condition of incompressibility written in terms of velocities 

Er' (t, I‘) + 2%' (1, r) - 0 

and relations (3.21, taking prestressing into account, we obtain 

ee (t, r) = - + e 
adr<& 

r(t’ r)=( ;“A’::: A(z*(r))]/r* + l/oeo(r), b. <r<b (t) 

(3.29) 

P(r)= oe”(r)/G (0) 
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Taking into account relations (3.29), from the defining equation (3.5) we 
radial stress in regions 2 and 3 the expressions 

oj?‘(t,r)=o,(t,bcJ- l+(t) i g(t,E)dE +i 44; f g(t,E)~P-~,~--E)d~ 
r’(r) t. T*(r) 

obtain for the 

(3.30) 

(3.31) 

t 
1 

T 5 e”(b(5))G(t--S)z(~,E)h(S)d~} 
WQ 

g (6 d = G U - rl) b’ 0-d [b Ml-” 

The resolving system of equations in this case has the form (the value of c corresponds 
to the instant t) 

A(f) i g(t,e)da-5A(r)[g(t,r)Z(t.T)- [ g(t,Q)R(t--.7--5)dE}dr=~P(t)- (3.32) 
e(c) L. r*(C) 

t 

s e’ 
A(t)+ A@)R(t-T*(c),T--~*(c))dr=- 

k (f-~*(c)) 

2 v3 c P--* (EN 
. 

(3.33) 

40. Discussion of the results. When analyzing the solution of the problem of the stress- 
strain state of a growing incompressible hollow sphere for the rheological characteristics 
of the material, the law of accretion and the acting load , we take the following relations: 

G(t)=Go, R(t,%) = & {(C, + Cfl-fiz) [ 1 - e-V+T) 1) 

k(t) = k, (1 - q&xf), b (t) = u.8’ 

p (t) = PO + PI:, 0: (4 = 8 

where Go, C1, CI, k, qo, po, ~1, 8, p, y, x, fJ are positive constants. In this case all quadratures 
appearing in (3.30), (3.31) and in (3.32), (3.33) can be expressed in terms of elementary 
functions. 

We use the following units: for length, the internal radius a of the hollow sphere, for 
time, the quantity n-i, and for pressure, the limit value of the yield point k,. Retaining 
the previous notation for dimensionless quantities, we take the following numerical values 

for them: b. = 2; Go = lm; PO = 1.65; C, =a 0.05; C* =I 0.75; qo = 0,s; p = 1; Y = 2; p1 = 0.25. In the 

calculations the parameters fi, 8 were varied. 

Fig.2 Fig.3 
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-a. 25 

Fig.4 Fig.5 

An analysis of the results of a numerical investigation of the Solution of the problem 
shows that for the same rheological properties of the material and the law of internal pres- 
sure variation, the rate of growth and the degree of prestressing of the accreted layers have 
an important effect on the stress-strain state of the hollow sphere. 

The calculated dependence of the plastic region radius on time is shown in Fig.2. Curves 
1, 2, 3 are calculated for various rates of growth (the parameter 6 takes the values 0.025; 
0.175; 0.35) respectively, without prestressing the layers (S = 9) * It can be seen that the 
initial value of the radius of the plastic region is larger, the larger the accretion rate. 
This explained by noting that at a relatively high rate of growth, the yield stress in the 
original hollow sphere at the instant the inner pressure is applied is comparatively far from 
its limit value, while when the rate of growth is low, the material has time to "age" consid- 
erably and become more rigid. However, subsequently for a high rate of growth the plastic 
region extension is slowed down, since in this case the redistribution of the stresses from 
elements of the original sphere to the newly created layers is more intensive. Curves 4 and 
5 are calculated for the same ates of growth ($=0.175) at different degrees of prestressing 
of accreted layers (the parameter 8 is respectively equal to 0.2 and 0.4)). It follows from 
a comparison of curves 2, 4, 5 that an increase in the degree of prestressing of accreted 
layers at an equal rate of extension of the hollow sphere external boundary, results in a 
slowing down of the expansion of the plastic region. 

The effect of the degree of prestressing of the layer in the growth region on the time 
of radial stress at the boundary of the original hollow sphere o,(t,b,) with the same law of 
growth (@= 0.175) is shown in Fig.3. Curves 1, 2, and3 correspond to the value of the pre- 
stressing parameter 8=0;0.2; 0.4. Note that strengthening of prestressing in accretion is 
equivalent to the application to the original hollow sphere of some supplementary external 
compression. This reduces the circumferential stress in the viscoelastic region of the 
original hollow sphere, and as previously noted, restrains the expansion of the plasticregion. 

The effect of the growth rate (when there is no prestressing) on the stress state of the 
layer r= 2.5 located in the accreted region is illustrated in Fig.4. Curves 1, 2, 3 corres- 
pond to three values of the growth rate p-0.1;0.175;0.35. A prime on the number denotes curves 
that correspond to circumferential stress and numbers with two primes correspond to the 
radial stress. It can be seen that the increase in growth rate results in an increase in the 
radial stress in layer considered. For instance, at the instant 1= 3 the absolute magnitude 
of the,radial stress when p- 0.35 (curve 3")exceeds the value at p- 0.i (curve 1") by a 
factor of 10.5. Simultaneously the increase in growth note is accompanied by a drop in the 
rate of increase of the circumferentialstress. This is explained by the increasing compres- 
sive reaction of the accreted layers. 

The effect of prestressing on the magnitude of the stresses in the same layer T= 2.5 for 
the same law of growth (fi= 0.175) is shown in Fig.5. Curves 1, 2, 3 correspond to three values 
of the prestress parameter 8=O.i;(L2;0.4. As seen from Fig.5, prestressing may lead to a 
qualitative change in the nature of the dependence of the circular stress in the accreted 
region on time. When the initial tension in the accreted layers is fairly intensive, the 
circumferential stress changes its sign , which indicates a loss of prestressing in some in- 
ternal part of the wall of the accreted hollow sphere. 
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THE DEFORMATION THEORY OF PLASTICITY OF ANISOTROPIC MEDIA* 

B.E. POBEDRYA 

Mutually inverse defining equations of the deformation theory of plasticity 
of media with arbitrary anisotropy are written assuming the relations 
between the stresses and deformations to be quasilinear. The conditions 
of plasticity and unloading are considered. Theorems are proved on the 
existence and uniqueness of solutions of the quasistatic problem of the 
deformation theory of plasticity and of simple loading. The method of 
successive approximations for solving the problem is considered, and its 
convergence is proved. Various means of simplyfying the theory are 
considered. Theorems of minimum Lagrangian and the maximum of the 
Castiglianian are proved. 

In the deformation theory of plasticity the stresses and deformations are connected by 
finite relations. When these relations are quasilinear (tensor-linear) /l/, and'the medium 
is isotropic, for simple processes /2/ all theories of plasticity agree with the deformation 
theory (the theory of small elastic-plastic deformations) /3/. However, in practice that 
theory is used for a wider class of processes of deformations. The advantage of this theory 
is its simplicity, the mutually inverse relations between the stresses and deformations, the 
availability of theorems of existence and uniqueness and of the minimum of the Lagrangian 
and maximum of the Castiglianian , of the theorem of simple loading and unloading /2/, and 
also the existence of an effective method of solving quasistatic problems, the method of 
elastic solutions /2/, whose convergence was adequatly analyzed in /4, 5/. Below a deforma- 
tion theory is constructed for initially anisotropic media. 

1. Let the symmetric stress tensor u be a tensor function of the small deformation 
tensor e; this function is invariant to transformations that characterize certain classes 
of anisotropy. The function can be represented in the form of the dependence of the tensor 
s and some "parametric" tensors A,, A,,... that define the considered anisotropy class /l/. 
Let us assume that this anisotropic function is quasilinear (tensor-linear) /l, 6/. This 
means that its polynomial representation /7/ contains only tensors linearly dependents on e, 
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